

MINTphilmal

Lösung Knobelaufgabe Dezember 2025/3

Wieviel Plätzchen waren ursprünglich auf dem Blech?

Wenn x die ursprüngliche Anzahl der Plätzchen auf dem Blech ist, verbleibt nach der Entnahme von Ida ein Rest von $R_1 = x - (\frac{x}{2} + 1) = \frac{x}{2} - 1$

Hiervon entnimmt Anton wiederum die Hälfte plus eins, damit verbleibt ein Rest R2.

$$R_2 = R_1 - (R_1/2 + 1) = \frac{x}{2} - 1 - (\frac{x}{4} - \frac{1}{2} + 1) = \frac{x}{4} - \frac{3}{2}$$

Hiervon entnimmt nun Emil wiederum die Hälfte plus 3 und das Blech ist leer, d.h.

$$R_3 = R_2 - (R_2/2 + 3) = \frac{x}{4} - \frac{3}{2} - (\frac{x}{8} - \frac{3}{4} + 3) = \frac{x}{8} - \frac{15}{4} = 0$$

Lösung: Die Gleichung $\frac{x}{8} - \frac{15}{4} = 0$ lässt sich nun nach x auflösen.

$$\rightarrow \quad \frac{x}{8} = \frac{15}{4} \quad \rightarrow \quad x = \frac{15*8}{4}$$

Damit ergibt sich x = 30

Man könnte

- 1. ausgehend von 1.024 die Menge jeweils halbieren und am Ende durchzählen, um auf die Lösung zu kommen, wie viele Kinder Plätzchen bekommen.
- 2. Der rechnerische Ansatz lautet 2^x = 1024. Aufgelöst nach x ergibt sich x = $\frac{\ln{(1024)}}{\ln{(2)}}$ = 10

Lösung: 10 Kinder bekommen Plätzchen.